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1 Introduction

An end-user problem requiring the estimation of a probability distribution often requires
that distribution to be of a particular geometric shape (ranked, unimodal, bell-shaped
etc) but not necessarily of any particular parametrically-defined form. The problem
might, for example, require a bell-shaped distribution but not necessarily any particular
bell-shaped distribution such as the Normal.

Under such circumstances, to use a particular parametrically-defined form would be
to consider only a subset of the possible solutions. This could affect both the precision
and the accuracy of the solution and thus potentially cause the end-user to place greater,
or lesser, reliance upon results than is justified by any data.

Consider what is perhaps the simplest case; that of ranked distributions. These have
long been a source of interest because of their mixture of simplicity and complexity.
Because they cover such a disparate range of data, the emphasis by various authors has
historically been on particular types of ranked distribution which can be represented
parametrically in various ways.

Zipf [13] famously saw in the distribution of the commoner words in the English lan-
guage the pattern called Zipf’s Law, now often called the Zipf/Pareto Law in recognition
of Pareto’s earlier work [9] on economics. Here, the governing equation is Z(i) = K.(1/i),
for some K the role of which is to normalise the distribution by bringing the sum of the
terms to 1; on the finite set i ∈ {1, . . . , N} this becomes

Z(i) =
1

N∑
j=1

(1/j)

(
1

i
). (1)

Mandelbrot [7] extended this (with different notation) to

Z(i) =
(i+ V )−1/D

ΣN
j=1(j + V )−1/D

for some D,V.
Regardless of which form is used, however, it is clear that neither representation could

be expected to cover all ranked distributions, and that -indeed- there is no parametric
form which could do so.

A similar situation arises with other types of distributions, such as unimodal distri-
butions. The basic concept is clearly of genuine potential use, but taking a parametric
approach virtually forces us to consider specifically bell-shaped distributions of various
forms. This happens to such an extent that it is difficult to find any description of uni-
modal distributions which does not assume their fundamental shape to be bell-shaped.
This is despite that this clearly cannot be the case in general since it is all too easy to
draw an unimodal distribution which is not bell-shaped.

If we want to analyse ranked distributions generally, or unimodal distributions rather
than specifically bell-shaped distributions, then we need to take a set-oriented approach,
rather than a parameter-oriented one, by considering the set of all ranked, unimodal etc
distributions (on a finite domain). Such sets of distributions form the natural environment
for best-estimates of probabilities: what will here be called“likelinesses”.
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This change in terminology from “best-estimate of probability” to “likeliness” is not
simply to reduce the wordage. It also heralds a change in philosophical emphasis away
from probabilities to likelinesses: a change in what Whittle called [10] the “entity of prime
interest”. Whittle was interested in making expectation the entity of prime interest; here,
we shall be following a different line by making likelinesses the centre of our investigations.

The consequences of this change in entity of prime interest include:

• We shall not be interested in how good an estimate of probability our best-estimates
are. Such questions are appropriate when the entity of prime interest is probability,
but not when it is likeliness.

• We shall not be concerned with whether or not a sample is “large”. Large samples
are of importance when using frequentist probability because of the definition in
terms of limit. Likelinesses are defined without using limits, so the size of a sample
will not be of concern. Consequently, likelinesses are very much, but not only, a
“theory of small samples”.

• We do not need the concept of probability to define likeliness. Instead, we shall be
defining probability in terms of likeliness.

• We shall be able to distinguish between a probability and a best-estimate of a prob-
ability, and so say things such as “Probabilities may be substituted into the Multi-
nomial Theorem, but best-estimates may not”. Such statements are meaningless in
the Kolmogorov approach -which is so wide-ranging that it captures best-estimates.

There is, unavoidably, the problem of how to calculate likelinesses. Although there
are simple cases for which formulae have been developed to enable us to find likelinesses,
most real-life problems are so complicated that only a numerical analysis can be used,
involving sampling from an appropriate set of distributions, called the underlying set;
this might, for example, be the set of all ranked distributions or the set of all unimodal
distributions, etc. Until recently, the scale of the number-crunching involved has placed
such analyses beyond everyday computers; this has led to a lack of interest in the subject.
Recent improvements in computer technology, namely improvements in FORTRAN and
the change to 64-bit architecture for PCs, have brought the analyses back into the realm
of the practical.

2 Notation and Terminology

Basics

Let R+ be the non-negative reals, and N+ be the non-negative integers. For N ∈ N let
XN = {1, . . . , N}. N is called the degree.

Let f : XN →]0, 1] be such that ΣN
i=1f(i) = 1. Then f is called a distribution on XN .

S(N) is the set of all such distributions.
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Histograms and Integrams

Let G(N) = {g|g : XN → N+}, H(N) = {h|h : XN → R+}, so G(N) ⊂ H(N).
The elements of H(N) are called histograms on XN and those of G(N) integer-valued
histograms, shortened to integrams, on XN . The histogram h is identified with the point
(h(1), . . . , h(N)).

For h ∈ H(N), the sample size of h is ω(h) = ΣN
i=1h(i).

For h ∈ H(N), f ∈ S(N) we define fh = f(1)h(1)...f(N)h(N).
For g ∈ G(N), the Multinomial coefficient associated with g is

M(g) =
ω(g)!

ΠN
i=1g(i)!

.

The integram of degree N and sample size 0 is (0, . . . , 0), which is denoted by 0, or
–if greater clarity is needed– by 0N .

For h ∈ H(N)\{0}, i ∈ XN , the Relative Frequency of i given h is RF (i|h) =
h(i)

ω(h)
.

If we roll a die and throw the number 2 then we have not only thrown a 2 once but we
have also thrown 1, 3, 4, 5 and 6 zero times each. So we can think of ourselves as having
thrown the integram (0,1,0,0,0,0). Also, we have not actually thrown the number 2 but
have, rather, thrown the face labelled “2”. It will be very convenient to adopt notation
which associates the formal symbol “2” with (0,1,0,0,0,0).

We define ′′i′′N to be that integram (x1, . . . , xN) for which xi = 1 but xn = 0 otherwise;
for example, ′′2′′6 = (0, 1, 0, 0, 0, 0). It is usually possible to write ′′i′′ rather than ′′i′′N
without introducing ambiguity. Importantly, f

′′i′′ = f(i) and M(′′i′′) = 1.

Likeliness of an integram

For g∈G(N), h∈H(N), P a non-empty subset of S(N) we define

LP (g|h) = M(g)
Σf∈Pf

gfh

Σf∈Pfh

where Σ is the Daniell integral.
LP (g|h) is called the likeliness, over P, of g given h. Since P, g or h will usually be clear

from the context, this terminology can normally be shortened by omitting appropriate
terms.

h is called the given histogram, g the required integram and P the underlying set. More
generally, any non-empty subset of S(N) is called an underlying set in S(N).

We have LP (0|h) = 1 for all (h,P). LP (g|0) is written as LP (g).

The distribution ( LP (′′1′′|h), ..., LP (′′N ′′|h) ) is called the L-point. This is a member
of P if P is convex: in general, it belongs to Core(P).
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If P is a singleton set, P = {f}, then LP (g|h) = M(g)f g, which is denoted by
Pr(g|f, h): since this is independent of h the notation may be simplified to Pr(g|f);
however, the presence of the h, although technically unnecessary, can sometimes add
clarity.

If the context allows, which it usually does, we can further simplify the notation by
writing LP (i|h) rather than LP (′′i′′|h) and Pr(i|f) rather than Pr(′′i′′|f).

Likeliness of a set of distributions

Let V ⊂ S(N). Then the likeliness of V, over P and given h, is

LP (V |h) =
Σf∈V ∩Pf

h

Σf∈Pfh
.

For x ∈ [0, 1] let Vx = {f ∈ S(N)|Pr(g|f) < x}. Then LP (Vx|h) is the likeliness,
over P and given h, of the set of those f ∈ P for which Pr(g|f) < x. We denote this by
LP (Pr(g|f) < x|h). That is, in the text string ‘LP (V |h)’ we replace the name ‘V’ by the
definition of V.

The function • : [0, 1] → [0, 1] : x 7→ LP (Pr(g|f) ≤ x|h) is the expected CDF of
Pr(g|f).

Likewise, if 0 ≤ x0 ≤ x1 ≤ 1 then we define LP (Pr(g|f) ∈ [x0, x1]|h) to be LP (V |h)
where V = {f ∈ P |Pr(g|f) ∈ [x0, x1]}: that is, by again replacing the name ‘V’ by
the definition of the set V. By covering [0,1] by cells in this way, we obtain an expected
frequency distribution for Pr(g|f).

3 General Results

3.1 Chain Rule

Theorem 1. Chain Rule

(∀g2, g1 ∈ G(N)) (∀h ∈ H(N)) LP (g2 + g1|h) =
M(g2 + g1)

M(g2)M(g1)
LP (g2|g1 + h)LP (g1|h)

Proof. The proof is by substitution of the definitions of the likelinesses.

This does generalise in the expected way:

LP (gm + · · ·+ g1|h) =
M(gm + · · ·+ g1)

M(gm) . . .M(g1)
LP (gm|gm−1 + · · ·+ g1 + h) . . . LP (g1|h). (2)

For example,

LP (g3 + g2 + g1|h) =
M(g3 + g2 + g1)

M(g3)M(g2)M(g1)
LP (g3|g2 + g1 + h)LP (g2|g1 + h)LP (g1|h).
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3.2 Bayes’s Rule (Likeliness form)

Theorem 2. Bayes’s Rule (Likeliness form)

LP (g2|g1 + h) = LP (g1|g2 + h).
LP (g2|h)

LP (g1|h)
,

Proof. Since addition of integrams is commutative, we have LP (g2+g1|h) = LP (g1+g2|h)
and therefore, from the Chain Rule (Theorem (1)),

LP (g2|g1 + h).LP (g1|h) = LP (g1|g2 + h).LP (g2|h).

In particular, putting h = 0 gives

LP (g2|g1) = LP (g1|g2).
LP (g2)

LP (g1)
.

3.3 Multinomial Theorem

3.3.1 Multinomial Consistent

Let g ∈ G(N), h ∈ h(N) and P be an underlying set in S(N). Then we shall say that
(g, h, P ) is Multinomial Consistent (MC) if

LP (g|h) = M(g)F g
h

where Fh ∈ S(N) is given by Fh(i) = LP (i|h) for all i ∈ XN .

In general, (g, h, P ) is not MC. Theorem 3 gives two circumstances under which it is.

Theorem 3. If ω(g) 6 1 or P is singleton then (g, h, P ) is MC.

Proof. (i) If ω(g) = 0 then g=0 so LP (g|h) = 1, M(g) = 1 and F g
h = 1. So LP (g|h) =

1 = 1.1 = M(g)F g
h .

So (g, h, P ) is MC.

(ii) If ω(g) = 1 then g =′′ i′′ for some i ∈ XN and we may wlg take i = 1. Then
M(g)F g

h = 1.LP (1|h)1LP (2|h)0 . . . LP (N |h)0 = LP (1|h) = LP (g|h).

So (g, h, P ) is MC.

(iii) If P is singleton, P = {f}, then (∀i ∈ XN) LP (i|h) = f(i), so Fh = f . So
LP (g|h) = M(g)f g = M(g)F g

h .

So (g, h, P ) is MC.
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3.3.2 Multinomial Consistency

With the same notation, we define the Multinomial Consistency of (g, h, P ) by

CM(g, h, P ) =
LP (g|h)

M(g)F g
h

.

CM(g, h, P ) = 1 iff (g, h, P ) is MC.

3.3.3 Hypothesis

If α > 0 then, for any given (g, h, P ), CM(g, αh, P ) is a function of α. It is hypothesised,
but has not been proved, that, unless P is singleton, or ω(g) 6 1 or h = 0, that function
is always either strictly increasing or strictly decreasing. If this is the case then, with
the exceptions noted, that function takes the value of 1 at most once, so the set of α for
which (g, αh, P ) is MC is of measure zero.

4 Symmetry

4.1 (i,j)-symmetry

Let i, j ∈ XN . For f ∈ S(N) we define f(i,j) to be that distribution obtained from f by
interchanging f(i) and f(j). We then say that the underlying set P is (i,j)-symmetric if P
contains f(i,j) whenever P contains f. We say that P is symmetric if P is (i,j)-symmetric
for all i, j ∈ XN .

We say that h ∈ H(N) is (i,j)-symmetric if h(i)=h(j), and that it is symmetric if it is
(i,j)-symmetric for all i,j, ie. if it is a constant histogram h = c = (c, c, ..., c) for some c.

4.2 Indifference

Theorem 4. Indifference Theorem

Let P be an underlying set in S(N), i, j ∈ XN and h ∈ H(N).
If P and h are both (i,j)-symmetric then LP (j|h) = LP (i|h).

Proof. The proof is a simple matter of label-interchange. Interchange the labels ‘i’ and
‘j’; P is unaffected because it is (i,j)-symmetric.

Likewise, h is also unaffected since it, too, is (i,j)-symmetric.

So if we write the expression for LP (i|h), namely

LP (i|h) =
Σf∈Pf(i)fh

Σf∈Pfh

then all that changes is that the ‘i’ in ‘LP (i|h)’ becomes a ‘j’, so that ‘LP (i|h)’ becomes
‘LP (j|h)’. In particular, the RHS does not alter and so retains its original value of
LP (i|h).
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Hence LP (j|h) = LP (i|h)

4.2.1 Probabilistic versions

Historically, the Principle of Indifference (aka the “Law of Insufficient Reason”) has always
been incorrectly worded as giving probabilities with the singleton underlying set {f} where
f is the L-point. The result is various so-called paradoxes, of which the most famous is
the Perfect Cube Factory.

Keynes [5] wrote it as

If there is no known reason for predicating of our subject one rather than another
of several alternatives, then relative to such knowledge the assertations of each of these
alternatives have an equal probability. Thus equal probabilities must be assigned to
each of several arguments, if there is an absence of positive ground for assigning unequal
ones

Hájek [2] gives it as

“whenever there is no evidence favoring one possibility over another, they have the
same probability.”

Wikipedia [11] introduces the concept of the names (labels) of the outputs:-

“Suppose that there are n > 1 mutually exclusive and collectively exhaustive possibil-
ities. The principle of indifference states that if the n possibilities are indistinguishable
except for their names, then each possibility should be assigned a probability equal to
1/n.”

(In each case, the bolding of the word ‘probability’ is mine.)

4.2.2 Perfect Cube Factory

There are several versions, all essentially the same, of the Perfect Cube Factory. This
version is taken from Hájek (ibid).

A factory produces cubes with side-length between 0 and 1 foot; what is the probability
that a randomly chosen cube has side-length between 0 and 1/2 a foot? The tempting
answer is 1/2, as we imagine a process of production that is uniformly distributed over
side-length. But the question could have been given an equivalent restatement: A factory
produces cubes with face-area between 0 and 1 square-feet; what is the probability that a
randomly chosen cube has face-area between 0 and 1/4 square-feet? Now the tempting
answer is 1/4, as we imagine a process of production that is uniformly distributed over
face-area. This is already disastrous, as we cannot allow the same event to have two
different probabilities (especially if this interpretation is to be admissible!). But there is
worse to come, for the problem could have been restated equivalently again: A factory
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produces cubes with volume between 0 and 1 cubic feet; what is the probability that a
randomly chosen cube has volume between 0 and 1/8 cubic-feet? Now the tempting answer
is 1/8, as we imagine a process of production that is uniformly distributed over volume.
And so on for all of the infinitely many equivalent reformulations of the problem (in terms
of the fourth, fifth, power of the length, and indeed in terms of every non-zero real-valued
exponent of the length). What, then, is the probability of the event in question?

The paradox arises because the principle of indifference can be used in incompatible
ways. We have no evidence that favors the side-length lying in the interval [0, 1/2] over its
lying in [1/2, 1], or vice versa, so the principle requires us to give probability 1/2 to each.
Unfortunately, we also have no evidence that favors the face-area lying in any of the four
intervals [0, 1/4], [1/4, 1/2], [1/2, 3/4], and [3/4, 1] over any of the others, so we must
give probability 1/4 to each. The event the side-length lies in [0, 1/2], receives a different
probability when merely redescribed. And so it goes, for all the other reformulations of
the problem. We cannot meet any pair of these constraints simultaneously, let alone all
of them.

Theorem 4 makes it clear that Indifference applies to the Likeliness, that is the mean
probability. In the case of the Perfect Cube Factory, the underlying set is S(N), where
N is the number of subintervals which we divide ]0.1[ into, and the given histogram is 0.
The problem as stated incorrectly takes the underlying set as {f} where f is the L-point.

Figure 1: Contradictions in the Perfect Cube Factory

Figure 1 shows how the problem views contradictions as arising.
The falsely-worded Indifference Principle claims to give the ‘probability’. Does this

mean the actual probability, which we would obtain if we were to visit the Factory and
measure a large number of cubes? It clearly does not; the whole point of the problem, is
that we do not know what that distribution is.

The uniform distribution, being over S(N), is an approximation to that distribution,
not the distribution itself.

When we extrapolate, by squaring or cubing as appropriate, we obtain another ap-
proximation.

So we have two different approximations, obtained in different ways.
There is nothing wrong per se with having two different approximations: there is

no logical contradiction. The paradox arises only if we forget that we are dealing with
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approximations and start thinking that Indifference and its extrapolation are both sup-
posed to be giving the actual distribution and therefore should be giving the same result
as one-another.

5 Underlying set= S(N)

5.1 Law of Succession

For P = S(N), h ∈ G(N), i ∈ XN we have

LS(N)(
′′i′′|h) =

Σf∈S(N)f
′′i′′fh

Σf∈S(N)fh

Evaluation of the RHS is a standard problem, the solution to which is the multinomial
version of Laplace’s Law of Succession: -

Theorem 5. Law of Succession

LS(N)(
′′i′′|h) =

1 + h(i)

N + ω(h)

�

This implies that (for ω(h) > 0) LS(N)(
′′i′′|h) is between

1

N
and

h(i)

ω(h)
: the former is

LS(N)(i) and the latter is RF (i|h).

The proof of Theorem 5 is surprisingly complex and lengthy, and is also perhaps-not-
surprisingly difficult to track down in the literature. For the case h ∈ G(N), which is
sufficient for most of our purposes, the procedure is to use integration by parts to set
up two reduction formulae -one to reduce the power of f(N) by 1, and another to reduce
the degree by 1 if the power of f(N) is 0. These are used, turn-and-turn-about until the
degree has been reduced to 1, at which point the integrals have become a single-variable
Riemann integrals over an interval, which can then be integrated directly.

5.2 Combination Theorem

Introduction

This Theorem is here named after the Combination Postulate, which was proposed by
Johnson [3] but not proved by him.

William Ernest Johnson was a late 19th-early 20th century logician, based in Cam-
bridge, working on probability theory and economics. His work is important in the history
of the development of probability theory since it was linked to, and a close forerunner of,
de Finetti’s work on exchangeability.

At the time of his death in 1931, Johnson was working [8] on a 4-volume work called
Logic, the first three volumes of which were published posthumously; the fourth volume
was not completed.

In Volume 3 [3] he wrote:-
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. . . the calculus of probability does not enable us to infer any probability-
value unless we have some probabilities or probability relations given.

The following two postulates in the Theory of Eduction are concerned
with the possible occurrences of the determinates p1, . . . , pn under the deter-
minable P.

(1) Combination Postulate
In a total of M instances, any proportion, say m1 : m2 : . . . : mα where

m1 +m2 + · · ·+mα = M , is as likely as any other, prior to any knowledge of
the occurrences in question.

(2) Permutation Postulate
Each of the different orders in which a given proportion m1 : m2 : α for M

instances may be presented is as likely as any other, whatever may have been
the previously known orders.

In what follows certitude will be represented by unity.
By (1), the probability of any one proportion in M instances

=
M !

α(α + 1)(α + 2) . . . (α +M − 1)

[The word ‘Eduction’ is correct. It is not, as seems to have been assumed by Good [1]
(or his proof-reader), a mis-spelling of ‘Education’.]

The final expression is the reciprocal of

M+α−1Cα−1

Using different notation, Good [ibid], apparently in the belief that he was quoting John-
son, gave this as the number of ordered α-partitions of M. Johnson, himself, described it
[ibid, page 178] as the number of integral solutions of the equationm1+m2+· · ·+mα = M .

Johnson did not prove the Combination Postulate, and reportedly [1, 12] abandoned
it in favour of another postulate [4] because he was not entirely satisfied with it. Good
called that other postulate the “Sufficientness Postulate”.

Since its wording might be slightly obscure, it may help to explain the Combination
Postulate at this stage. Imagine rolling a die. In any one roll, there are six possibilities,
or ‘determinates’, namely “1”, “2”,. . . , “6”; so α = 6. If we were to roll the die 10 times
then there would be 10 ‘instances’ of those determinates; that is M = 10. Say the number
of rolls of each face were (1, 3, 0, 2, 2, 2) respectively: these are the values of the mi. Of
course, 1 + 3 + 0 + 2 + 2 + 2 = 10: that is, we have an ordered 6-tuple of non-negative
integers summing to 10: this is an ordered 6-partition of 10.

What is confusing to the modern eye is Johnson’s use of the word ‘proportion’ to refer
to something which we would not usually think of as a proportion. He is using it to refer
to an ordered 6-tuple such as (1, 3, 0, 2, 2, 2), ie. what we are here calling an integram.
The Combination Postulate, when it says that any proportion is as likely as any other,
is saying that any integram is as likely as any other of the same sample size.

There are two questions remaining about Johnson’s wording, concerning the circum-
stances under which they are equally likely, and the meaning of the word ‘likely’,

Johnson uses the expression “prior to any knowledge of the occurences in question”.
That knowledge can come from two places: theory and observation, so there must be no
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knowledge from either source. No knowledge from theory suggests that the underlying
set should be S(N); no knowledge from observation suggests that the given histogram
should be 0. So, for example, if we consider the tossing of a coin then all we know about
the probability-pair (Pr(“H”),Pr(“T”)) is that it is –as all probability-pairs must be–
somewhere on the line segment from (0,1) to (1,0).

So far as the meaning of the word ‘likely’ is concerned, there are two possible con-
tenders: probability and best-estimate of probability, ie. likeliness. It has to be remem-
bered that we are specifically maintaining the distinction between the two.

In the formal wording of the Combination Postulate, Johnson uses the word ‘likely’
but does not actually refer to probabilities. He does use the word ‘probability’, but only
outside of that formal wording. This admits the possibility that, when drafting the formal
wording, Johnson may have been thinking (albeit at an intuitive level) of a wider concept
than ‘probability’ but subsequently interpreted it as meaning specifically probability.
Whether or not this was the case must, of course, be a matter of speculation but the
condition he states does suggest that he may have been thinking about the expected
value of the probability, ie. what happens on average, rather than the probability itself.

So could it be that Johnson’s wording of the Combination Postulate was correct but
that his stated interpretation of it in terms of probabilities, rather than expected values of
probabilities, was not? This would certainly cause him difficulties, as we know happened.

It will be shown that the Combination Postulate does apply to likelinesses if the
underlying set is S(N) and the given histogram is 0.

Lemma 1. Let g ∈ ΩN(n) and i ∈ XN be such that g(i) > 0. Then

LS(N)(g) = Kn · LS(N)(g −′′ i′′)

where
Kn =

n

N + n− 1
.

Proof. Write g in a form which allows the Chain Rule to be applied:

LS(N)(g) = LS(N)(
′′i′′ + (g −′′ i′′))

=
M(g)

M(′′i′′)M(g −′′ i′′)
· LS(N)(

′′i′′|g −′′ i′′) · LS(N)(g −′′ i′′).

Expanding the leading coefficient and from the Law of Succession, this is

ω(g)

g(i)
· 1 + (g(i)− 1)

N + ω(g −′′ i′′)
· LS(N)(g −′′ i′′),

which simplifies to the required result.

Combination Theorem

Theorem 6. Combination Theorem

(∀g ∈ ΩN(n), n > 0)LS(N)(g) =
n!

N(N + 1) . . . (N + n− 1)
.

12



Proof. Given any g for which n = ω(g) > 0, it is always possible to find an i for which
g(i) > 0. Since Kn is independent of that i we may use Lemma as a reduction formula
to repeatedly reduce the sample size in steps of 1 –without needing to worry about which
i is being used at any step– until it reaches 0, at which point we have

LS(N)(g) = Πn
m=1Km · LS(N)(0) = Πn

m=1Km = Πn
m=1

m

N +m− 1

=
n!

N(N + 1) . . . (N + n− 1)
,

After allowing for the difference in notation compared to that used by Johnson, this
agrees with the Combination Postulate as stated by him but not as interpreted by him.

It follows that (∀g1, g2 ∈ ΩN(n)) LS(N)(g1) = LS(N)(g2).

5.3 Order of sample space

Likelinesses sum to 1 across the sample space so, from the Combination Theorem, we
have

(∀g ∈ ΩN(n))LS(N)(g) =
1

|ΩN(n)|
and so

|ΩN(n)| = N(N + 1) . . . (N + n− 1)

n!
= n+N−1CN−1.

5.4 Integram Theorem

Theorem 7. Integram Theorem

(∀g1, g2 ∈ G(N)) LS(N)(g1|g2) =
M(g1)M(g2)

M(g1 + g2)

|ΩN(ω(g2))|
|ΩN(ω(g1 + g2))|

Proof. By the Chain Rule,

LS(N)(g1 + g2) =
M(g1 + g2)

M(g1)M(g2)
LS(N)(g1|g2)LS(N)(g2),

so
1

|ΩN(ω(g1 + g2))|
=

M(g1 + g2)

M(g1)M(g2)
LS(N)(g1|g2)

1

|ΩN(ω(g2))|
,

which rearranges to give the Integram Theorem:

This includes both the Law of Succession and the Combination Theorem as special
cases. The Law of Succession is recovered when ω(g1) = 1, that is g1 =′′ i′′ for some i;
the Combination Theorem when g2 = 0.

13



5.5 Algorithm for S(N)

The algorithm used to generate an element, f, of S(N) is to use the RAND function to
select N-1 distinct points in ]0,1[, label them in ascending order as P (1), . . . , P (N − 1),
define P(0)=0 and P(N)=1, and then for i = 1, . . . , N take f(i) = P (i)− P (i− 1).

Take N = 9 and g = (2, 3, 0, 0, 0, 0, 1, 0, 1). Then ω(g) = 7, so, by the Combination
Theorem, LS(9)(g) = 1/6435 = 1.554 ∗ 10−4. See Figure 2a for a comparison of results
produced by the algorithm with this value.

(a) Example 1: LS(N)(g) (b) Example 2: LS(N)(g|h)

Figure 2: Convergence of algorithm for LS(N)(g) and LS(N)(g|h)

With the same N and g, taking h = (1, 1, 0, 3, 2, 0, 0, 1, 2) gives ω(h) = 10, ω(g + h) =
17,M(g) = 420,M(h) = 151200,M(g + h) = 3.431 ∗ 1010 and hence, by the Integram
Theorem, ES(9)(g|h) = 7.489 ∗ 10−5 . See Figure 2b.

5.6 Coins

Define a coin to be any element of S(2). A physical disc used for the purposes of trade will
be called a minted coin. Write ′′H ′′ rather than ′′1′′ and ′′T ′′ rather than ′′2′′. Interpret a
result of tossing a coin (possibly minted) n times as an element of Ω2(n).

That f ∈ S(N) for which (∀i, j ∈ XN)f(i) = f(j) will be called the fair element of
S(N). The fair coin is the coin (1

2
, 1
2
).

The likelinesses over {(1
2
, 1
2
)} of the results of tossing the fair coin n times are given

by Pascal’s Triangle, derived from the Binomial Theorem (ie. the Multinomial Theorem),
in Table 1a. The likelinesses over S(2) of the results of tossing a coin n times are also
given by a triangle, as shown in Table 1b, derived from the Combination Theorem. In
both tables, the rows n = 0, 1 correspond to the cases ω(g) = 0, 1 in Theorem 3.

Table 2a shows the likelinesses over S(2) as the number of successive Heads increases.
The likeliness of obtaining all ′′H ′′, ie. LS(2)(n

′′H ′′), where n is the number of tosses,
comes from the Combination Theorem. The likeliness of ′′H ′′ once n Heads have been
obtained, ie LS(2)(

′′H ′′|n′′H ′′), is from the Law of Succession.
Table 2b shows the equivalent for the fair coin; because P is singleton, Pr has

been written rather than LP . Pr(n′′H ′′|f) comes from the Multinomial Theorem; since
Pr(′′H ′′|f, n′′H ′′) is independent of n′′H ′′ it is always Pr(′′H ′′|f), ie. 0.50.

14



If a minted coin were being tossed then it would be unrealistic to expect it to be a
precise concretisation of the fair coin: doing so would be equivalent to selecting a set
of measure zero. On the other hand, since minted coins are manufactured under some
form of quality control, it would also be unrealistic to expect them to have frequentist
probabilities which were randomly distributed over S(2). Intuitively, we might in some
sense anticipate a minted coin to be ’close to’, but not necessarily coincident with, the
fair coin.

We can investigate this type of situation by using an underlying set which is a con-
traction, centred on the fair coin, of S(2). We do this by introducing the mapping

S(2)→ S(2) : f 7→ q + α · (f − q) (3)

where q is the centre of the contraction, in this case (1
2
, 1
2
), and α is its magnitude. If α = 0

then f 7→ q, so the underlying set becomes the singleton set {q} and the Multinomial
Theorem applies. If α = 1 then f 7→ f, so nothing changes: the underlying set remains
S(2) and the Combination Theorem applies.

(a) Centre=(
1

2
,
1

2
) (b) Centre=(0.95,0.05)

Figure 3: Contractions of S(2)

By varying α from 0 to 1 we can construct a diagram showing the transition of
the likeliness of any given integram from the Multinomial Theorem to the Combination
Theorem. This is shown in Figure 3a for the integrams (2,0), (1,1), (0,2); that is, for all
possible results of two tosses.

We do not have to choose the fair coin as the centre of the contraction. Figure 3b
shows the transitions with q = (0.95, 0.05).
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n Row
sum

0 1 1
1 2 1 1
2 4 1 2 1
3 8 1 3 3 1

(a) Binomial Theorem

n Row
sum

0 1 1
1 2 1 1
2 3 1 1 1
3 4 1 1 1 1

(b) Combination Theorem

Table 1: Representations of likelinesses over (a){(1

2
,
1

2
)}, (b) S(2)

No. of tosses, n= 0 1 2 3 4 5 6 7
LP (n′′H ′′) 1 0.50 0.33 0.25 0.20 0.17 0.14 0.12

LP (′′H ′′|n′′H ′′) 0.50 0.67 0.75 0.80 0.83 0.86 0.88 0.89

(a) P=S(2)

No. of tosses, n= 0 1 2 3 4 5 6 7
Pr(n′′H ′′|f) 1 0.50 0.25 0.12 0.06 0.03 0.01

Pr(′′H ′′|f, n′′H ′′) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

(b) P = {f} = {(1
2
,
1

2
)}

Table 2: Repeated tosses of ′′H ′′
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6 Discussion

The difference in meaning between ‘I estimate my next-door-neighbour’s height to be
5′6′′ ’ and ‘My next-door-neighbour’s height is 5′6′′ ’ is clear. One is an estimate and the
other a statement of fact.

The difference between the value of something and an estimate of its value is important
and worth preserving. Yet probabilities and likelinesses (which are best-estimates (means)
of probabilities) are easily confused. Although this confusion is certainly not helped by
the terminology associated with the Kolmogorov approach, it in fact goes back to the
earliest days of probability theory, where Laplace [6], for example, specifically referred to
the Law of Succession as giving the probability.

It is not too difficult to see why this confusion happens:-

• Historically-important examples of probabilities such as fair coins, unbiased dice,
well-shuffled packs of cards, thoroughly-mixed urns of balls, are all of a case for
which the concepts of probability and expected value of probability (likeliness) are
identical: that of a singleton underlying set.

• Both probabilities and expected values of probabilities can be -and are- used as
measures of the informal concept of ‘how likely something is to happen’.

• Kolmogorov defined ‘probability’ in such a wide way that it covers Likelinesses.
This makes it impossible to say things such as ‘Probabilities are a special case
of Likelinesses’. His mathematics was fine, but -from the terminological point of
view- it would have been better if he had used another word, rather than the
already-existing ‘probability’. Retaining the word ‘probability’ has made it virtually
impossible to have a sensible discussion about the differences between a value and
an estimate of that value.

• If we were presented with the ordered pair (0.5, 0.5) then how could we tell whether
it gave the probabilities of the two faces of a coin or the best-estimates of their
probabilities?

One example of such confusion is the use of Uniformity by firstly taking the mean
over S(N) and then substituting it into the Multinomial Theorem. Here, Theorem 3 tells
us that the use of the Multinomial Theorem would be justified if the underlying set were
singleton, whereas the underlying set is S(N) - which is not singleton.

A similar example is the ‘Perfect Cube Factory’ where the nature of uniformity as the
mean over a non-singleton set is ignored, and it is incorrectly treated as if it were the
actual distribution rather than an estimate of it.

The question of when Likelinesses ‘obey’ the Multinomial Theorem, formalised here
as Multinomial Consistency, is intrinsically about when mean values (Likelinesses) are
mapped to mean values by the taking of powers, ie. is concerned with asking when the
mean value of [xn] is equal to [the mean value of x]n, that is, when ΣP xn is equal
to [ΣP x]n. It is not difficult to see that we have equality when n=0,1 or P is singleton.

The most important of these sufficient conditions for MC is that P be singleton.
Outside of academic examples which specify the actual distribution to be used (such
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as saying that a coin is fair), the circumstances under which we have such a singleton
underlying set are arguably non-existent. The closest that we can come to such a situation
is perhaps when sampling from a known, finite population, although the question may
still arise as to randomness in the form of uniformity.

This is where Johnson appears to have encountered the difficulties which eventually
led him to abandon the Combination Postulate. In his interpretation of this Postulate, he
refers explicitly to it as applying to probabilities, whereas it applies when the underlying
set is S(N). Having made that error oof interpretation, he would then have had irresolvable
difficulties with the Multinomial Theorem -as did iin fact happen.

At first glance, Table 1 may seem to be saying that uniformity can ‘survive’ mapping
by the Multinomial Theorem. This is not the case. With the exception of the identical
two topmost rows of Tables 1(a) and 1(b) (and their equivalents for other degrees),
the Combination Theorem and the Multinomial Theorem are applicable under different
conditions.

We cannot escape lightly from the question “Does or does not the distribution (1
2
, 1
2
)

give probabilities?”. Because if it does then it may be used in conjunction with the
Multinomial Theorem but if it does not then it may not.

The answer to this is “It all depends”.
Tempting though it may be, the question is badly posed. “Giving” or “not giving”

a probability is not a property of the distribution itself: it is a property of how that
distribution was obtained.

• If the distribution was obtained by some form of averaging -for example- by an
appeal to symmetry- then it is an average and so does not give probabilities and
may not be used with the Multinomial Theorem.

• If the distribution was deduced from data then it is a likeliness but is not a proba-
bility -at least it is not a Pr(g|f)- since it is not independent of data, as all Pr(g|f)
must be. It is here that we encounter the linguistic weakness which has been forced
upon us by the retention of the word ‘probability’ when the subject was being
axiomatised, because we do use ‘probability’ to describe such things.

• If the distribution arose as a given then it is a probability, at least it is a Pr(g|f).
Consider the question “A fair coin is tossed 20 times, and comes down Heads 15
times and Tails 5 times. What is the probability of Heads?’ ’. The answer is 1

2

because the coin is fair. The given histogram (15,5) has the status of being a fluke,
nothing more: it does not affect anything; the coin is fair, and that is an end to the
matter. The underlying set is the singleton {(1

2
, 1
2
)}, which is the defining property

of a probability, and the result is independent of data, which is a necessary property.

In practice, even when the Multinomial Theorem should not be used it often is.
When this is done, then it is an approximation, and the question arises as to how good
an approximation it is. A minted coin is a good approximation to the fair coin, but a
minted coin which has had a lump of lead fixed to one face will be less good.

The need for such approximations is because of simplicity. Except in a few standard
cases, the practical calculation of likelinesses has to be numerical, involving sampling
from the underlying set.

To summarise the standard cases considered here:-
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• The Multinomial Theorem gives the likeliness of g given h when the underlying set
is singleton.

• The Law of Succession gives the likeliness, over S(N), of g given h when ω(g) = 1.

• The Combination Theorem gives the likeliness, over S(N), of g given h when h = 0.

• The Integram Theorem gives the likeliness, over S(N), of g given h when g & h are
both integrams.

These represent simple situations which are very useful in theoretical calculations but
of limited (which is not a polite way of saying ‘no’) use in practice -for example, because
the underlying set will commonly be neither singleton nor S(N).

Although some of the simpler likelinesses, such as these, are easily calculated, analysis
using more complicated underlying sets is not simple, and usually requires numerical
techniques.

Until fairly recently, the scale of those numerical techniques had usually placed such
analyses beyond practical use, so the subject has tended to be out of favour. Computer
technology has, however, been improving so that it is now at a level where practical
implementation is possible. For example, using the Author’s own program (freely down-
loadable from his website), each point in Figure 3 involved the taking of a sample of
200,000 distributions from the underlying set, with a run-time of less than 10 seconds.

Nonetheless, the limits on double-precision storage have placed severe limitations on
the size of problems which could be addressed: with the exception of the simpler examples,
data sets have been limited to the order of 100 or so observations. Recent changes to the
way FORTAN handles double-precision numbers, combined with the move to 64-bit PCs,
has changed this to such an extent that most practical problems could (in principle) now
be addressed, with data sets of thousands of observations.
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