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1 Introduction 
GREAT LIKELINESSES (the name is a pun on that of Charles Dickens's novel Great Expectations) is a 
program for producing distributions of various types and using them, if desired, to calculate likelinesses, that is 
best-estimates of probabilities. 
 
If the version number shown on the opening screen ends in a C then you are using a classical version which has 
been sent to someone (presumably you?) for evaluation. If it ends in an F then you have a full version. 
 

 
 
 
In a classical version, the degree is limited to values which have some significance in classical probability 
problems. If you try specifying any other value then the program will stop immediately. The acceptable degrees 
are: - 
 

2,3,4,5,6,8,13,16,26,32,36,39,52,64,128,216,256,365,512,1024 
 

In a full version, the degree can be any whole number from 2 to 1111. 
 

2 There is no warranty 
This program is currently under development, and is not intended to be used in any situation where there are or 
might be deleterious consequences arising from that use. 
 
There is no warranty of any form. For example, there is no warranty against failure of the program, or against 
failure of the program to produce the correct result. 
 
By using the program, you accept full responsibility for all the consequences of that use. If you are not willing 
to accept that responsibility then do not use the program. The program asks for positive verification that you do 
accept that responsibility before it accepts any further input from you. 
 

3 Amendments implemented in this release 
Amendments implemented in this release include 

 
 Expanded multi-modal functionality 
 

The nature of amendments is usually such that existing versions of DETAILS.TXT and DEFAULTS.TXT will 
be rendered unusable. When running this version for the first time, please select item 999 from the opening 
menu; otherwise the program will not run properly (or at all). 
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4 Known Issues 
4.1 General comments about over/underflow 
The number-crunching involved really can push your computer to its limits. The following should be avoided if 
possible:- 
 

 High degree; 
 Large number of iterations; 
 Overly-complicated underlying set; 
 Merge block(s) 
 Given histogram with large sample size; 
 Required integram with large sample size. 

 
Any one of these, if taken to extremes, but especially any combination of more than one, can cause a run-time 
error. If this should happen to you then you will probably firstly want to reduce the number of iterations. 
Alternatively, or additionally:- 
 

 You might consider reducing the degree, for example by measuring the independent variable in larger 
units (eg. weekly data rather than daily). 

 Ask yourself whether you really do need a complicated underlying set. It is very easy to impose far 
more conditions than you would ever dream of using with a traditional closed, parametric analysis. 

 
Due to interactions between the various items, it is not possible to give precise guidance about the meanings of 
“High degree" etc. However, anything which increases the chances that the program will encounter a term of the 
form f(i)x where f(i) is very small but x is large is not a good idea. 
 
If there is any chance that you might run into difficulties of this type then you should use the sampling files, or 
some other technique, to model your observational or experimental program before carrying it out. 
 
4.2 Poor choice of contraction 
If you choose the centre of a contraction to be a point which has a co-ordinate of 0 and then also specify a 
magnification of 0 then the result will be a function which does not meet the definition of a “distribution”. 
Depending on the context of the rest of the problem, this can give a run-time error. 
 
This is not considered to be a serious problem, since it should never arise in a genuine analysis. 
 

5 Software relationships 
5.1 Running from Windows 
Even if you have DOS or a DOS-equivalent (such as FreeDOS), it is still recommended that you run the 
program from within Windows rather than by switching, firstly, to DOS. This is because the program can be so 
fast with simpler analyses that the screen buffer cannot keep up and so forces the program to slow down 
significantly. Windows has improved screen-buffering which largely overcomes this. Just switch to your File 
Manager and double click on the .exe file. 
 
5.2 Using Spreadsheets 
The .csv files have been designed to be viewed within a spreadsheet. 
 
Open your spreadsheet by right clicking on the icon for the file you want to open and selecting `open with'. You 
should then be offered the choice of programs to use to open the file. Choose your favourite spreadsheet: you 
should then be offered a choice of options defining how the spreadsheet is to interpret the file. 
 
5.2.1 Microsoft Excel 
As the separator, choose a comma (,). As the text delimiter, choose a double quote ("). Do not choose to merge 
successive delimiters. 
 
5.2.2 OpenOffice/Apache OpenOffice Calc 
As the separator, choose a comma (,). As the text delimiter, choose a double quote ("). Do not choose to merge 
successive delimiters. For versions 3.3 and later of Calc, select `detect special numbers' (you will not be offered 
this option in earlier versions). 
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5.2.3 LibreOffice Calc 
As the separator, choose a comma (,). As the text delimiter, choose a double quote ("). Do not choose to merge 
successive delimiters. Select `detect special numbers'. 
 
5.2.4 Lotus 1-2-3 
[Support for Lotus 1-2-3 was withdrawn by IBM (its then-owner) in September 2014. Consequently, you may 
find it beneficial to run it in Compatibility Mode.] 
 
Choose `Parse as CSV'. When the spreadsheet opens, it may seem that some of the fields have been asterisked 
out: they have not -it's just that the default column widths are too small. 
 
In all spreadsheets, when viewing RESULTS.CSV, you might find it helpful to widen Columns A and B.  
 
 

6 Basics 
6.1 Basic concepts 
A coin is of degree 2; a die is of degree 6; a pack of cards is of degree 52. The degree is the number of 
possibilities that something (tossing a coin; rolling a die; drawing a card) may take}. It is the number of classes 
in a classification system. 
 
The possibilities/classes are labelled 1,2, . . . ,N where N is the degree. 
 
Given a degree, we can always define an histogram with that degree, e.g. 
 
 
Table 1: Histogram 

i 1 2 3 4 5 6 
h(i) 3.0 4.2 0 0.7 1.8 0 

 
The values in an histogram are all non-negative. If, additionally, they are all non-zero and sum to 1, then that 
histogram is a distribution:- 
 
Table 2: Distribution 

i 1 2 3 4 5 6 
f(i) 0.2 0.1 0.35 0.05 0.25 0.5 

 
 
If the values are all integers, then the histogram becomes an integram:- 
 
Table 3: Integram 

I 1 2 3 4 5 6 
g(i) 3 4 0 0 1 0 

 
The most important histogram is the integram 0 = (0,0, . . ,0) 
 
If f is a distribution and g is an integram, both of degree N, then the probability of g given f is Pr(g|f)= M(g)fg, 
where M(g) is the multinomial coefficient associated with g, and fg=f(1)g(1). . .f(N)g(N)}. 
 

 
The expression for M(g) contains the product of factorials, so each g(i) has to be integer-valued, so g has to be 
an integram. 
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The best-estimate of something is its mean value. In order to have a mean value, there must be a set of values to 
find the mean of. This program best-estimates Pr(g|f) so there has to be a set of Pr(g|f) to find the mean of. We 
start with a set of distributions, called the Underlying Set, calculate Pr(g|f) for each f in that set and then find the 
mean of those. 
 
The mean used is a weighted mean, where the weights depend upon available data in the form of an histogram 
(called the given histogram). The actual formula used is 
 

 
 

The fh terms started life as Pr(h|f), that is M(h)fh, but the M(h) has cancelled since it appeared in both the 
numerator and denominator. The cancellation of the M(h) has taken with it any need for h to be integer-valued 
so h may be an histogram rather than specifically an integram. 
 
In a few simple cases the integrals on the RHS can be evaluated theoretically. Usually, however, a numerical 
approach is needed; that is what this program does. In essence, the process is very simple: we replace the 
integrals by summations and the underlying set, P, by a sample of distributions selected at random from P. That 
sample can be surprisingly large: about a million are often needed -the program defaults to 750,000- but 100 
million or more can at times be necessary. It is only recently that improvements in computer technology have 
made it possible for such large problems to be tackled on home computers. 
 
6.2 What the program does 
The program:- 
 

1. Finds LP(g|h), and other standard best-estimates, (means) by sampling from P. 
2. Keeps track of convergence as the sampling process proceeds. 
3. Produces a separate sample of distributions from P, and uses each as a generating distribution to 

generate simulated observations. 
4. Calculates the best-estimate of the probability (ie. the likeliness) that Pr(g|f)<xi for a selection of xi$ 

equally spaced across some interval specified by the user. Likewise for Pr(1|f), . . .,Pr(N|f)$. This is the 
likeliness equivalent of building up a CDF. 

5. For each of the subintervals [xi,x{i+1}] calculates the Likeliness that Pr(g|f) lies in that subinterval. This 
is the likeliness equivalent of building up a PDF. 

 
It does this for an underlying set, P, chosen by the user from those listed later in this manual. 
 
In addition, the program can carry out various manipulations on the underlying set, such as contracting it onto 
any centre. It can also handle merged data-blocks and filtering. 
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6.3 Files 
 
Table 4: Files used by program 

File name Purpose 
  
data.txt User-maintained file to store input data 
details.txt Keeps details of problem, for future editing and/or use   
defaults.txt Various defaults, to personalise the program 
results.csv The results of the analysis, for viewing in a spreadsheet 
debug.txt Keeps track of the progress of the program 
sampling_dis.csv Sample of distributions 
sampling_obs.csv Observations simulated by using the distributions in sampling_dis.csv 
sampling_rfs.csv Relative frequencies for the observations in sampling_obs.csv 
sampling_dis.txt Simplified text version of sampling_dis.csv 
sampling_obs.txt Simplified text version of sampling_obs.csv 
sampling_rfs.txt Simplified text version of sampling_rvs.csv 
errlog.txt Keeps track of run-time errors 
scratch1.txt 
scratch2.csv 

Scratchpads for the program's own internal use 

 
 
6.3.1 details.txt and results.csv 
When you start a new problem, you type it in from the keyboard. Details are saved in the file details.txt so that 
you do not have to type them in again on subsequent runs. You can change some aspects of a problem by editing 
data.txt in a text editor. 
 
Results are sent to the file results.csv for viewing in a spreadsheet. 
 
details.txt will be overwritten the next time that you run a problem from the keyboard; results.csv will be 
overwritten the next time you run any problem. If you want to keep data.txt or results.csv beyond that then make 
a copy, under a different name, in the usual way. 
 
6.3.2 Location of files 
The files listed in Table 4 will be placed in the same folder that you place the .exe file. 
 

7 Countdown 
While the program is carrying out an analysis, a countdown-to-completion is sent to the screen so that you can 
see progress. The analysis is in two parts: a fast initial pass, during which various items are roughly estimated so 
as to improve the efficiency of the program, followed by a slower second pass during which likelinesses are 
found. During the second pass, the countdown includes details of the estimated run-time: these estimates will be 
thrown out if the computer is used for any other purpose while the program is running. 
 

8 What you should do now 
1. Form a new folder to contain the files used by this program 
2. Transfer the .exe file and this manual into that folder 
3. Run the .exe file twice. 

 Firstly, select item 999 from the opening menu: this will set up various defaults.  
 Secondly, select item 9 to set up a template for data.txt 

 
You can then experiment with the program, to get a feel for what's going on. 
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9 Running the program 
To start the program, run the .exe file by double-clicking on it in the file manager. 
 

 
 
 
The opening screen gives you various options. If this is the first time that you have ever run this version then 
you must choose option 999 in order to set up various defaults, followed by item 9.. 
 
Otherwise, your choice will normally be between Option 1 if you are starting a completely new problem, or 
Option 2 if you are repeating a previous problem or running a modification of one. 
 
To start a new problem, choose Option 1. You will then be asked a number of questions, the answers to all of 
which will be numerical. For most of these, you will develop standard answers which you will soon get used to 
giving very quickly; with practice, your fingers will type most of the answers faster than you think of them. 
 
If you choose Option 2 then the computer will just take over and run the problem, giving you an on-screen 
progress report -which, for simpler problems, might flash past so quickly that you are unable to read it. 
 
10 Stopping 
The program will normally come to a stop of its own accord. There are times, though, when you might want to 
stop it prematurely. 
 
You can choose `Stop' from the opening menu. This will stop the program before it has really started. Rxisting 
files will remain unatered. 
 
Otherwise, simply close the window in which the program is running. However, if you do so during data-input 
from the keyboard then this will cause the file details.txt to be incomplete and therefore unusable on future runs. 
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11 Inputting data 
11.1 Basics 
Data can be input in several ways. These can be mixed-and-matched. 
 

 As a typed list of observations 
 As a typed sample size and a list of relative frequencies 
 From a file which may contain either observations or relative frequencies (not both at the same time) 
 Merge blocks 

 
11.2 Typing a list of observations 
Because the practical use of likelinesses is aimed towards smaller sample sizes, data will usually consist mostly 
of zeroes. To make inputting easier, you start by specifying a block about which you wish to be asked; the 
program defaults values outside that block to zero. Only details about that block need to be stored in details.txt 
(See section 17) 
 
Negative values are not allowed. Values inside the specified block may be zero.  
 
11.3 Typing Relative Frequencies 
You will firstly be asked for a sample size then for the relative frequencies.  
 
As when typing observations, you specify a block about which you wish to be asked, and RFs outside that block 
will default to 0. 
 
The RFs cannot be negative. 
 
To reduce errors, and also to make things easier for you, the RFS do not need to sum to 1: the program will 
normalise them for you. This means that at least one of the RFs must be non-zero. 
 
The normalised RFs are multiplied by the sample size to re-create the original data. 
 
11.4 Reading data from a file 

 The file must be called data.txt 
 Use of data.txt must be switched on in defaults.txt 
 The first item in data.txt must be a non-negative number, which will be called the contents-indicator. 

 
The contents-indicator is analogous to the sample size in relative frequencies: it is used to multiply each other 
item in data.txt before being added into the observations. 
 

 
 
This means that  
 

 If the contents-indicator (CINDICATOR) is 0 then the other contents of data.txt are all multiplied by 0, 
i.e. are in effect ignored; 

 If the contents-indicator is 1 then the remaining items are added straight into H, i.e. are treated as actual 
observations. 

 
Two conditions must be met before data.txt can be used: 
 

1. The appropriate switch must be set in DEFAULTS.TXT and 
2. The contents-indicator must be set to any positive,non-zero value. 
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A basic all-zero data.txt can be formed by selecting the appropriate item from the opening menu. As doing so 
will cause the loss of the current file, the user is twice asked to confirm that this was intended. 
 
There is no harm in having too many items in data.txt: the program will simply read from the start of the file 
until it has read as much as it needs, and then ignore the rest. Having too few items will cause a run-time failure 
(EOF read). For this reason, the all-zero file has the maximum permissible number of items, which should 
normally be left in place. 
 

 
11.5 Merge Blocks 
A merge block occurs in a table of data if there is a record of the total number of observations within a 
contiguous block of columns, but records have not been kept of the detailed figures for each column. 
 
A common type of merge block is when data is shown as “3 or fewer”, or “6 or more” or similar phrases. 
 
Great Likelinesses can cater for three situations, as shown in the following tables. 
 
Table 5: Merge Block at left 

3 or 
fewer 

4 5 6 7 8 

9 2 0 3 3 1 
 

Table 6: Merge Block at right 

1 2 3 4 5 6-8 
2 1 6 2 0 7 

 

Table 7: Merge Blocks at each end 

1-3 4 5 6-8 

9 2 0 7 

 

It is possible to edit the labels and titles within data.txt if you wish. But this is a specialised task 
which you are strongly advised not to do unless you really do know what you are doing. 
 
The problem is that you might form a string which the computer interprets as a number. If this 
should happen then the computer will from that point onwards be thrown “out of sync” and 
read the wrong values into the wrong variables. 
 
You are advised to carry out a test-run after editing data.txt, to make sure that everything 
works correctly. 
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In practice, when data is collected in batches it sometimes happens that some batches contain a merge block but 
others do not. To cater for this, the program allows merge blocks to be entered independently of H1 and H2, and 
to overlap their non-zero entries. 
 
The degree is the number of columns there would have been had the merging not taken place; it is 8 in each of 
the above tables. 
 
The use of Merge Blocks introduces such vagueness into a problem that the resulting algorithms can be highly 
ill-conditioned. A significant increase in the number of iterations will be needed, but will not necessarily 
improve convergence to an acceptable extent; indeed, increasing the number of iterations could make 
convergence properties worse rather than better. For this reason, Merge Blocks should always be used with 
caution. 
 
If there is a Merge Block, the program uses the information about the Merge Block to recreate the third 
histogram, H3. H3 is created dynamically, every time that a new distribution is selected from the underlying set 
and will change as that distribution changes, so it is not possible to specify it. This continually-changing nature 
of H3 is a significant component of the vagueness which is introduced by the use of merge blocks.  
  

12 The required integram 
The required integram, g, is specified in the same way as is H1: by giving a block about which you want to be 
asked, with values outside that block defaulting to zero. 
 
The calculated Likeliness of g is shown on-screen as part of the countdown display. This means that 
convergence can be monitored whilst the calculations are proceeding. 
 

13 Percentile 
As part of the input routine, you are asked for a percentile for the program to estimate. 
 
You are not asked whether or not you want a percentile, since it takes as much effort to say “No” as it does to 
give one. If you don't want a percentile then just reply “2 for No” and ignore the resulting 2nd percentile. 
 
Note the form of input. If you want the 5th percentile then input 5, not 0.05  . You are not restricted to integers, 
so you could ask for the 2.5th percentile, but this is not usual. 
 
Let's say that you input p, then the program calculates 
 

 
where fp% is the calculated p'th percentile of f. 

  

To find fp% it is necessary to interpolate the CDF of f -so the result depends upon the method of interpolation. Also, 
there is no universally-agreed definition of “percentile” when the domain is finite. Consequently, percentiles on finite 
domains -no matter how they are calculated- should always be treated with caution. 
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13.1 Method of interpolation 
Given a distribution f, the program firstly checks to find the value of J (J=1,...,N) for which 0.01*p lies between 
CDF[f(J-1)] and CDF[f(J)], where CDF[f(0)]=0. It does this by firstly checking J=1, then J=2 etc, ie by working 
from the left. Having found J, then program then uses linear interpolation between J-1 and J to find fp%. 
 
 
Figure 1:Linear interpolation, as used to find p'th percenti
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14 The underlying set} 
14.1 Components of the underlying set 
 
As a general rule, anything other than data (values of h(i) and g(i)) which has to be stated in order to define the 
problem forms part of the definition of the underlying set. Components include:- 

 
1. fundamental type 
2. degree 
3. contraction 
4. reflections 
5. forced values 
6. filters 

 
14.2 Fundamental types of underlying set 
14.2.1 Unstructured, S(N) 
 
S(N) is the set of all distributions of degree N. 
 
There is no relationship between the f(i) other than the requirement that they sum to 1. The fact that the domain, 
XN, is ordered is irrelevant. 
 

 
Figure 2: Likelinesses over S(29) 

 

 
Figure 3: Individual element of S(29) 
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14.2.2 Ranked, R(N) 
f is ranked if f(1)>f(2)>... >f(N). 
 

 
Figure 4: Likelinesses over R(29) 

 
 
 

 
 

Figure 5: element of R(29) 

14.2.3 Reverse-ranked, RR(N) 
The mirror-images of ranked distributions, these increase to the right: f(1)<f(2). . .<f(N). 
 
14.2.4 Step-down, SD(c,N) 
c is called the “step”. The function values ‘up to’ c are all greater than those ‘above’; that is, if i≤c<k then 
f(i)>f(k). 
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Figure 6: Likelinesses over SD(6,29) 

 

 
Figure 7: Individual element of SD(6,29) 

14.2.5 Ranked step-down, RSD(c,N) 
The same as step-down except that, in addition, the function values up to c are ranked; that is, if i<j≤c<k then 
f(i)>f(j)>f(k)$ 
 
c can sometimes be interpreted as a limit of discrimination for a ranked distribution. 
 

 
Figure 8: Likelinesses over RSD(6,29) 
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Figure 9: Individual element of RSD(6,29) 

14.2.6 Tailed Step-Down, TSD(c,N) 
Similar to ranked step-down except that it is the function values above (rather than up to) c which are ranked; 
that is, if i≤c<j<k then f(i)>f(j)>f(k). 
 
 

 
Figure 10: Likelinesses over TSD(6,29) 

 
 

 
Figure 11: Individual element of TSD(6,29) 
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14.2.7 High/Medium/Low, HML(c,d,N)} 
An HML distribution has two steps, subdividing it into 3 parts. 
 
If i≤c<k≤d<l then f(i)>f(k)>f(l) 
 
 

 
Figure 12: Likelinesses over HML(6,13,29) 

 
 

 
Figure 13: Individual element of HML(6,13,29) 
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14.2.8 Ranked High/Medium/Low, RHML(c,d,N) 
A Ranked High/Medium/Low distribution is an HML distribution for which the `top step' is ranked. 
 
If i<j≤c<k≤d<l then f(i)>f(j)>f(k)>f(l) 
 
 

 
Figure 14: Likelinesses over RHML(6,13,29) 

 

 
Figure 15: Individual element of RHML(6,13,29) 
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14.2.9 Unimodal, M(A to B,N) 
 
Each distribution has precisely one mode. The mode does not have to be the same for every distribution used in 
the analysis, although it can be if so required. The program asks for a range of i which the mode may take; the 
smallest value is A and the largest is B. You will usually use one of two specific cases:- 
 
 
 

 
Figure 16: Likelinesses over M(6,29) 

 
 

 
Figure 17: Likelinesses over M(29) 

 
1. To use a specific mode, m, put A=B=m. We then write M(m,N) rather than M(m to m,N). 
2. If A=1 and B=N then M(A to B,N) becomes M(1 to N,N), which is written as M(N). This is the set of 

all unimodal distributions of degree N. 
 
Despite the impression given by some mathematical texts, unimodal distributions are not usually bell-shaped. 
You are offered the option to use only bell-shaped distributions, but you should not usually accept this offer. 
 
There are two concepts of mode: the local and the global. 
 
Local modes 
i is a local mode of f if 

 
1. i=1 and f(1)>f(2); or  
2. i=N and f(N-1)<f(N); or 
3. 1<i<N and f(i-1)<f(i)>f(i+1). 
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Global modes 
i is a global mode of f if f(i)=max{f(j)|j∈XN}. 
 
This program uses local modes throughout. If you want to use unimodal distributions but with a global, rather 
than local, mode then use PLAT(1,A to B,N) instead. 

 
Figure 18: Likelinesses over PLAT(1,6,29) 

 
 

14.2.10 Bell-shaped, B(A to B,N) 
 
The notation used to refer to bell-shaped distributions follows that for Unimodal distributions, viz B(A to B,N), 
etc.  
 
The definition used by Great Likelinesses is An unimodal distribution for which the absolute values of the first 
differences on either side of the mode are unimodal. 
 
 

 
Figure 19: Likelinessses over B(30,100) 
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Figure 20: Forward differences of Likelinesses over B(30,100) 

 
Figure 19 shows likelinesses over B(30,100), and Figure 20 shows their forward differences. The platykurtic 
shape of Figure 19 is due to the longer tail of the first differences on the right than on the left (because there is 
more room there). 
 
14.2.11 U-shaped, U(A to B,N) 
The logical dual of unimodal distributions, U-shaped distributions have a single `trough' rather than a single 
`mode'. Otherwise, there is no difference between the two. 
 

 
Figure 21: Likelinesses over U(6,29) 

 
14.2.12 Multi-modal 
The domain, XN, is covered by several (maximum, 9) `mini' unimodal distributions, which may overlap. Each 
mini unimodal distribution has its own essential domain, over which that unimodal distribution takes non-zero 
values, and which is extended to cover the whole of XN by using values of zero elsewhere. 
 
During data-input, the user specifies the essential domain and the range of values that the mode make take. The 
combination of these two forms what is called a piece.  
 
If the degree is no more than 77 (the maximum number of characters per line on some displays) then a visual 
aide de memoire will appear on the screen during data-input to help keep track of where the mini unimodal 
distributions are. This is switched off if the degree is more than 77. 
 
Whenever a new multimodal distribution is needed, the program selects a mini unimodal distribution for each 
piece, and then uses them to produce the final distribution. 
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The user can use defaults.txt to choose between two ways for using the mini distributions to produce the final 
distribution; both methods require the specification of a set of weights. Those weights are randomly selected 
from one of five sets, specified as part of the data-input: 
 

 S(p); 
 R(p); 
 SD(c,p) for some c; 
 RSD(c,p) 
 TSD(c,p)  

 
where p is the number of pieces (modes). 
 

    
 
 

    
 
   
 
 
 

 
Figure 22: Example Likelinesses using different types of weights 

The program applies weights to the pieces in the order in which their details are typed into the computer, which 
need not be left-to-right; this gives flexibility when defining the problem. For example, using the same pieces as 
used to produce the above figures, but entering their details in the order shown by the numbering gives the 
following with weights taken from R(7). 
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When a new multimodal distribution is being constructed, the program selects a single point from whichever of 
these sets the user had specified and then uses its co-ordinates as the weights. 
 
There are two ways to use those weights: 
 

 as coefficients in a linear combination of pieces; 
 as probabilities of selection of unimodal distributions 

 
14.2.12.1 Weights used as coefficients in linear combinations 
Having selected the mini unimodal distributions, the program forms a linear-combination by using the weights 
as the coefficients. 
 
14.2.12.2 Weights used as probabilities of selection 
If:- 
 

1. Each essential domain extends across the whole of XN, and 
2. You have chosen the option in defaults.txt to make this happen 

 
then the weights, once chosen, will not be used as coefficients in a linear combination but, rather, as 
probabilities-of-selection. Every time a new distribution is needed, weights will be chosen and then one of the 
pieces will be selected to be used as the required distribution, the weights being the probabilities-of-selection of 
the pieces. 
 
If the program is using linear combinations, then all distributions will come from the same multimodal 
population, but if it is using probabilities-of-selection then some will come from Piece 1, some from Piece 2, etc 
so there will be a distinct population for each piece. 
 

 
Consider the following example:- 
 
Degree= 59 
Multimodal with 3 pieces 
 
The modes are of equal dominance, so weights are to be taken from S(3) 
 
For Piece 1 the essential domain goes from 1 to 59 
The Mode is allowed to vary from 10 to 10 
 
For Piece 2 the essential domain goes from 1 to 59 
The Mode is allowed to vary from 30 to 30 

 When weights are used as probabilities-of-selection, each distribution is unimodal. The 
multimodal effect arises as the result of selections from different populations 
 

 When weights are used as coefficients, each distribution is multimodal 
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For Piece 3 the essential domain goes from 1 to 59 
The Mode is allowed to vary from 49 to 49 
 
Using weights as probabilities -of-selection (option 1 in defaults.txt), three sample distributions were as shown 

in  
                                   Figure 

 

 
                                  Figure 22: Weights used as probabilities-of-selection 
 

 Using the weights as coefficients for linear combinations (option 2 in defaults.txt), a sample 
distribution was as shown in Figure 23 
 

 
               Figure 23: Weights used as coefficients 
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Example 
 
Specification.  7 modes, consisting of three zones: 
 

 An initial zone of two pieces, with the second peak higher than the first 
 A transition zone, of the next two pieces, in which values die away 
 A final steady-state zone consisting of three pieces. 

 
We model this by using 7 pieces with RSD weights with a step at 4, but with details of the left-most two pieces 
entered in right-to-left order. 
 

 
Figure 24: Example multi-modal distribution 
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Example multi-modal distribution 

 
The choice of how to use weights affects the shape and distribution of individual distributions, but not their 
mean value (ie. the likeliness). 
 
 

 
Figure 23: Likelinesses for each choice 
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14.2.13 12.2.13 Plateau, PLAT(w,A to B,N) 
These are related to step-down distributions: take a step-down distribution and cycle it to the right. 
 
Plateau distributions need two numbers: the width and the start of the plateau. If the plateau has width w and 
starts at b then it finishes at c=b+(w-1) 
 

 
Figure 25: Terminologu for Plateau distributions 

The user specifies the width and a range of values A to B for the start, where B+(w-1)≤N. 
 
The set of all plateau distributions of degree N with width w which start in the range A to B is denoted by 
PLAT(w,A to B,N). If B=A then we write PLAT(w,A,N) rather than PLAT(w,A to A,N). 
 
There are two special cases:- 
 

1. PLAT(w,1,N) is SD(w,N); 
2. PLAT(1,A to B,N) is equivalent to M(A to B,N) but using the global, rather than local, concept of 

mode. 
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14.2.14 Sequential systems, SS(N) 
There is nothing special about those distributions produced as the outputs from sequential systems: every 
distribution can be considered as having been produced in that way. 
 
What is special is the totality of such distributions rather than the individual distributions per se; in particular, 
the fact that the distributions are not spread uniformly over S(N). Figure Figure 25: Distribution of sequential 
systems shows 500 distributions in SS(3). 
 
 

 
Figure 25: Distribution of sequential systems 

The algorithm:- 
 

1. Selects r∈R(N) 
2. Divides throughout by r(1) to give the function F(i)= r(i)/r(1). (This function is ranked with F(1)=1) 
3. Forms the forward differences f(i)= F(i)-F(i+1), with f(N)=F(N). 

 
This process defines a bijection (but not a linear bijection) from R(N) to S(N). The point LR(N) maps to Zipf's 
Law. 
 
The underlying set, SS(N), is the set of distributions produced by the program. 
 
14.2.15 Random values 
This underlying set comes with a health warning. 

 
It is doubtful whether you will have a need for this underlying set. If you want to select random distributions 
then use the set S(N) 
 
14.2.16 Reverse-ranked with unimodal slope 
(As the name suggests) 
 
14.2.17 Ranked with ranked slope 
(As the name suggests) 
 
14.2.18 Ranked with unimodal slope 
(As the name suggests) 
  

The use of random values is the naïve way to construct a random distribution: for each i, select a random 
value between 0 and 1, then normalise the result. 
 
This is wrong. Using random values in this way does not produce an uniform covering of S(N). 
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14.3 Modifications of the underlying set 
 
14.3.1 Contractions 
 
A contraction is a mapping of the form f↦q+α(f-q). α is the magnitude, and q the centre, of the contraction. 
 
A magnitude of 0 replaces every distribution by the centre: this gives a singleton underlying set. 
A magnitude of 1 maps every distribution to itself, and so has no effect. 
 
If you do want to have a contraction then you need to specify its centre together with upper and lower limits on 
the magnitude. 
 

 When giving the centre, you can just type its co-ordinates. If the degree is large, however, this will 
involve a lot of typing and so be at high risk of including a typing mistake. The program therefore also 
gives you the choice of several standard cases. 

 If you specify limits on the magnitude within 0.0001 of one-another then they will be given equal 
values. 

 If you say that you do not want a contraction then details.txt will include the specification of a nominal 
contraction which has a magnitude of 1 and therefore has no effect. This is to make it easy for you to 
change the magnitude by editing details.txt. Strictly speaking, this means there will always be a 
contraction. 

 
Whenever the program needs a contraction it will make a random choice of magnitude intermediate between the 
limits that you specified. If the limits are equal then that value will always be used. 
 

 If the magnitude selected by the program is less than 0.0001 then the distribution being operated upon 
will be replaced by the centre of the contraction; this is equivalent to using a magnitude of 0. 

 If the magnitude is greater than 0.9999 then the distribution will not be altered; this is equivalent to 
using a magnitude of 1. 
 

(These bullet points are interpreted literally and so do cover negative magnitudes and magnitudes greater 
than 1.) 
 
14.3.2 Reflections 
The reflection of f from A to B takes the distribution f and reverses the order of f(A), ..., f(B). The reflection 
from 2 to 5 of (1,2,3,4,5,6,7) is (1,5,4,3,2,6,7). The reflection from A to A does nothing, ie is the identity 
mapping. 
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Great Likelinesses allows you to specify up to two reflections: one to be carried out before any contraction, and 
the other after. You are given the choice of four options: 
 

 Choice 0:   No reflection 
 Choice 1:   Use just a reflection before any contraction 
 Choice 2:   Use just a reflection after any contraction 
 Choice 3:   Use both reflections 

 
Great Likelinesses always uses both reflections, to make it easy for you to modify an analysis by altering the 
stored details rather than having to type them in the correct format and position ab initio. If you say that you do 
not want either of them then that reflection is defaulted to the reflection from 1 to 1. details.txt always contains 
choice 3, followed by the specification of two reflections, defaulted if necessary. 
 
Provided you are not using a contraction, you can use the two reflections to interchange (ie. swap) f(A) and f(B) 
without affecting the intermediate values. 

 If B=A+1 or B=A+2 then carry out the reflection from A to B 
 If B>A+2 then carry out (in either order) the reflections from A to B and from A+1 to B-1.  

 
14.3.3 Forced Values 
You may force upper and lower limits on f(i) for a block of i. For example, you may require f(i) to be between 
0.1 and 0.2 for i= 4,5,6. 

 
The computer will firstly choose a distribution meeting your other specifications, and then it will overwrite the 
values inside the block by values chosen at random within the specified limits. That is, it retains the underlying 
set outside the block but destroys it inside the block, replacing it by random values. Making the substitution 
inside the block will, however, throw the overall sum off 1, so it needs to be brought back again by re-scaling. 
Since the values inside the block are at their specified values, they cannot be altered so all rescaling must take 
place outside the block. 

 
 
When reading the following list, it must be appreciated that in FORTRAN it is not meaningful to ask if two 
REAL (or DOUBLE PRECISION) variables are equal: it is necessary, instead, to set a non-zero tolerance and to 
ask if they are within that tolerance of one-another. Generally speaking, Great Likelinesses uses a tolerance of 
0.0001 for this purpose. 

 
 Although the same limits will be used for all i in the block, each f(i) will be independently selected at 

random between those limits. 
 The block must not extend over the whole of the domain, XN. There must be at least one i not in the 

block. If this were not the case then there would be nothing that could be adjusted to bring the sum 
back to 1. 

 If you place limits on n values of f(i) then the upper limit must be no more than 1/n, otherwise the sum 
of the values inside the block could exceed 1.  

 If the limits are within 0.0001 of one-another then it will be assumed that you want them to be equal, so 
each will be replaced by their mean. 
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 If the upper limit is 0.9999 or more then it will be set to 1.0000 
 If the upper limit is 1/n-0.0001 or more then the lower limit must differ by more than 0.0001 

 
The final choice you have to make is where in the sequence of modifications the imposition of forced values is 
to take place. The other modifications are carried out in the order: reflection, contraction, reflection. It does not 
automatically follow that you will want the forcing of values to take place at the end of this sequence (although 
you normally will), so you need to say what you want. There are four possibilities: before the first reflection, 
before the contraction, before the second reflection, at the very end. 
 

15 Filtering 
 
Once a distribution has been produced, it can be subjected to an accept/reject process according to criteria which 
you may set. 
 

 If accepted, it is included in the analysis 
 If rejected, it is discarded and another distribution is generated in its place (and also subjected to the 

filtering). 
 
Currently, two types of filtering have been enabled. 
 
15.1 Type 1 filtering 
 
You specify three things: 
 

(i) A block of i which you want to be considered by the filtering process. For example, you might want to 
look at i=5, …, 10 

(ii) A range of probabilities, eg 0.04-0.14  
 0 and/or 1 are allowed 

(iii) Upper and lower limits on how many of the f(i)s within the block lie in that range 
 The two limits may be the same 
 0 may be used as a limit  

 
The program then looks at the distribution and counts how many of the f(i)s within the block do fall within the 
range given in (ii). If that number is (inclusively) within the limits given in (iii) then the distribution is accepted, 
otherwise it is rejected. 
 

 
Figure 26: Type 1 filter 

 
Figure 26 shows 4 f(i)s in the block i=5, …,10 and within the range of probabilities from 0.04 to 0.14. So 
 

 With limits on the number of f(i)s of 1-3, this distribution would be rejected ; 
 With limits of 3-5, it would be accepted 
 With limits of 4-4, it would be accepted. 
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Example: To select those distributions for which f(4),f(5) and f(6) are all less than 0.1 

i. Choose the block i=4,5,6 
ii. Choose the range 0.0-0.1 

iii. Choose the limits 3 to 3 (ie. require precisely 3 -that is, all of them) 
    
Example: To select those distributions for which none of f(4),f(5) and f(6) is between 0.05 and 0.10 

i. Choose the block i=4,5,6 
ii. Choose the range 0.05-0.10 

iii. Choose the limits 0 to 0 
 
It is possible to specify an impossible filter, which no distribution could pass. For example, with a distribution 
of degree 5, requiring each f(i) to be greater than 0.25 would be impossible. Such an impossible filter would 
throw the program into a never-ending loop since it would be continually discarding one distribution after 
another in its hunt for an acceptable distribution. Even if a filter were possible, meeting its requirements might 
be so difficult that excessive run times would be encountered. Either situation would be easily identifiable once 
the program has started running; the program could then be stopped manually. 
 
15.2 Type 2 filtering 
 
You specify three things: 
 

(i) A block of i, called the object block, which you want to be considered by the filtering process. For 
example, you might want to look at i= 3,4,5,6 

(ii) Another block of i, called the comparison block, to form the basis of a comparison, for example 
i=14,15,16,17,18 

(iii) Upper and lower limits on how many of the f(i)s within the object block are to be greater than (or equal 
to) the largest f(i) within the comparison block). In Figure 27, for example, there are 3. 

 The two limits may be the same 
 0 may be used as a limit  

 

 
 

Figure 27 Type 2 filter 

 The Object and Comparison blocks do not have to be distinct. They may overlap or even be the same. 
 Interchanging the roles of the two blocks can give solutions to additional requirements. For example, in 

Figure 27 it is not possible to specify that all of the f(i)s in {3,4,5,6} should be less than all those in 
{14,…, 18}, but swap the roles of Object and Comparison blocks and it becomes possible. 
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16 Frequency distributions and CDFs 
The expected distribution of a probability can at times be useful. This will normally be concentrated in a fairly 
small region around the likeliness, so it would be inefficient to look at the whole of [0,1]; instead, we use a 
smaller interval to cover the range of interest, and then partition that interval into 20 cells and calculate how 
often the probability could be expected to fall into each cell. 
 
The difficulty is that such a range of interest cannot be determined until the frequency distribution has been 
constructed, but the frequency distribution cannot be constructed until the range of interest has been chosen. 
 
To get round this, the program carries out a quick first-pass through the iterations during which it collects 
enough information to enable it to make a reasonable estimate of the interval: which it then stores in details.txt. 
The intention is not to `get the interval right', but, rather, to be able to present you with enough information to 
make a better choice to suit your own needs, modifying details.txt accordingly. The program actually has very 
little to go on, so sometimes it does get things very wrong: but this is usually easily corrected by you.  
 
When running a problem for the first time (i.e. from the keyboard), you will not see any mention of the 
distributions of the probabilities: the program will just work away automatically producing its ranges of interest, 
which it then stores in details.txt for you to modify on later runs if you wish. 
 

17 details.txt 
You may edit details.txt with any simple text editor: use of a wordprocessor is not recommended since it might 
insert invisible codes. 
 
You would edit details.txt if, for example, you wanted to change the values of some data without having to 
retype the whole of the problem-specification. 
 
There are two types of item in details.txt: structural and non-structural. Structural items affect the layout of the 
remainder of details.txt; non-structural items do not. You are strongly advised not to edit structural items 
because of the knock-on effects for the rest of the file (which are usually not as easy to predict as might be 
thought). 
 
Each item is preceded by a brief description. Descriptions of non-structural items are in CAPITALS and are 
enclosed in square brackets [~]. 
 
To help you find your way around, items in a block of similar items are usually preceded by an indication of 
where you are, eg `h(11)'. These are not descriptions so the lower case and the round brackets should not be 
taken as indicating a structural item: the description is at the start of the block. 
 
If you make a syntactical mistake whilst typing the details of a new problem then the program can, and will, ask 
you to re-enter the information. If you make a syntactical mistake when editing details.txt, however, then the 
program cannot ask you to re-enter the information, because the program will not be running. The first you will 
know of the mistake is when you subsequently try running the program and a run-time error occurs; details of 
this will be sent to the screen and to the file errlog.txt. Behaviour is similar to that of a compiler: the error might 
not be picked up immediately and the reported form of the error might not be the actual form. 
 
The contents of details.txt are in a standard layout chosen to make subsequent editing as easy as possible, and so 
are not simply a repetition of your typing. The basic idea is that it is easier -and less error-prone- to alter an 
existing value than it is to insert an omitted value, so everything is specifically given and nothing is implied. 
Examples are:- 
 
When specifying an histogram, you give a block about which you wish to be asked, and the program defaults 
values outside that block to zero. Regardless of which block you specify, the block stored in data.txt always runs 
from 1 to N and the defaulted zero values are all specifically given. 
 
Regardless of whether or not you say that you want to use a contraction, the program always gives you one, 
albeit one which has no effect because it has a magnitude of 1. So the answer to the question `Do you want to 
use a contraction?' is always stored as `1' for `YES', followed by the centre and magnitude of a contraction. If 
you say that you do want a contraction then the stored details will be as specified by you. If you say that you do 
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not want a contraction then the magnitude will be 1 (and you don't have to worry about where the centre is, 
because the contraction will have no effect). 
 
When specifying the centre of a contraction, you are given the choice between various standard cases and 
specifying all the co-ordinates yourself. Regardless of how you reply, details.txt contains the answer 'specify 
them myself', followed by all the co-ordinates. 
 
The two things you will most often want to alter are (a) the number of iterations and (b) the subintervals used for 
the calculation of distributions. For convenience, these have been placed together, and are preceded by a line of 
asterisks across the screen, terminating with the words FREQUENT CHANGES HERE. 
 

18 results.csv 
18.1 Table 1: Input Data 
This Table summarises the data as input by you. 
 
If you are not using any Merge blocks, then each will be shown as `not used'. For any Merge block that you are 
using, the column `size' will show the number of observations you have specified for that block, and the extent 
of the block will be shown by the fields that have been `asterisked out'. 
 
If you are not using a contraction then the row `contraction' will show a contraction of size 1 and centre $''1''$. If 
you are using a contraction, then its size and centre will be as specified by you. 
 
18.2 Table 2: Random selection of 25 distributions 
For convenience, either for your own interest or for use when writing a presentation, this section shows a 
random selection of 25 distributions. Also shown is Pr(g|f). 
 
18.3 Table 3: Convergence of Likelinesses 
This table shows convergence of the calculated likelinesses as the iterations proceed. Plotted points are 
concentrated towards the beginning and end of the curve. 
 
The very beginning of the iterative process is not shown since values there are highly erratic and would throw 
out your spreadsheet's automatic scaling of the vertical axis. This does mean that the calculations will usually 
get to be very close to the final value before the tabulation has even started. Consequently, the automatic scaling 
will make variations seem more extreme than they really are: pay particular attention to the vertical scale; the 
whole of Figure 28, for example, is contained within an interval of approximately 0.001. 
 

 
Figure 28: Convergence of Likelinesses 
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18.4 Table 4: Likelinesses 
This will be the main table of interest: it gives the likelinesses of the standard integrams (the required integram, 
g, and each of the integrams “I”. 
 
It also shows the Multinomial Consistency, which is an indication of how well the likelinesses obey the 
Multinomial Theorem. This will usually be just for the purposes of reporting, since the program itself makes use 
of the Multinomial Theorem unnecessary. 
 
18.5 Tables 5&6: Frequency and Cumulative distributions 
The program partitions each range of interest (see Section 0) into 20 subintervals and finds the likeliness that 
Pr(g|f) or Pr(i|f), as appropriate, is in each of those subintervals. The results are output as Table 5, which 
consists of a number of small tables, one for each of the standard integrams. The centres of the cells have been 
included to make graph-plotting easier. 
 
The cumulative sums of the likelinesses in each of the sub-tables of Table 5 are then formed, to give the best-
estimated CDF for Pr(g|f) and for each Pr(i|f). These are output as Table 6. 
 

19 The Sampling files 
19.1 Introduction 
Every time the program is run, it forms six files which are called the sampling files. These come in two sets of 
three: three in CSV format and three in TXT format. Their contents are given in Table 8 
 
Table 8: Contents of sampling files 

File Contents 
sampling_dis.csv, 
sampling_dis.txt 
 

Sample of distributions\\ 

sampling_obs.csv, 
sampling_obs.txt 

Observations simulated by using the distributions in 
sampling_dis as generating distributions. 
 

sampling_rfs.csv, sampling_rfs.txt 
 

Relative frequencies for the observations in 
sampling_obs 

 
 
In the CSV files, the data is divided into groups and group-level data is produced. In the TXT files, there is no 
grouping. 
 
The three in CSV format are intended to be used in a spreadsheet; the three in TXT format are intended to be 
read as data by some other program, possibly a future version of this one. 
 
How many distributions there are, how many simulated observations there are per distribution and how many 
distributions there are per group, are controlled by altering the appropriate values in defaults.txt. The 
distributions used to construct the sampling files are totally distinct from those used to find likelinesses, so your 
choices here will not affect the main analyses. 
 
Great Likelinesses does not place an upper limit on the number of distributions which may be included in the 
sampling files. However, the user's software might: an older spreadsheet, for example, might have a maximum 
of about 65,000 rows. 
 
Many users will not have any need for the sampling files, but for those who do they can be a valuable part of the 
program. 
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19.2 CSV files 
Each CSV file is split into groups, the size of which is set in defaults.txt. 
 
At the top of the file, there is an initial header area, giving basic information about how the groups have been set 
up. 
 

 Specifying a group size greater than the number of distributions means that the program will never 
reach the end of a group and so not get round to producing group-level data: this is equivalent to 
turning grouping off. 

 A group size of 0 is defaulted to the number of distributions and so prints group data at, and only at, the 
very end of the files. 
 

Think of each row as representing the results of a test, where each test consists of a number of observations. 
Each group represents the results of an experiment, where each experiment consists of a number of tests. The 
whole file consists of a number of repetitions of an experiment, and shows the variation which might be 
encountered. 
 
Each line starts with a status field, which says what that line is all about. By sorting on this, a file can be split 
into its various components of individual results, group sums/averages and grand total. 
 
The first three characters of the status field correspond to the name of the file (DIS,OBS,RFS) and say what the 
line contains (distributions, observations, relative frequencies). The next three characters (IND,GRP,CUM) give 
the level of the data (individual, group, cumulative-so-far). 
 
Details of Group and Cumulative data are given in Table 9. 
 
 
Table 9: Group & Cumulative data in sampling files 

File Group data Cumulative data 
sampling_dis.csv 
(Figure 29) 

Mean of the f(i)'s for that group Mean of all the f(i)'s to date 
 

sampling_obs.csv 
(Figure 30) 

Total observations for that 
group 

Total of all observations to date 
 

sampling_rfs.csv 
(Figure 31) 

RFs for the group RFs for all observations to date 
 

 
 

 
Figure 29: Example sampling_dis.csv 
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Figure 30: Example sampling_obs.csv 

 
 

 
Figure 31: Example sampling_rfs.csv 
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19.3 TXT files 
The TXT files are so simple (Figure 32) that they do not include even column headings. 
 
 

 
Figure 32: Example sampling_dis.txt 

 
In the TXT files, observations are in I8 format, distributions and RFs are in E11.6, all with one space as a 
separator. 
 
 

20 Defaults.txt 
20.1 Introduction 
defaults.txt is intended to contain the answers to questions which most people either would not be interested in, 
or would not usually want to alter. These questions could rapidly become annoying if asked every time the 
program was run. 
 
Because defaults.txt is much simpler than data.txt, error-reporting is minimal: either something works or it 
produces a run-time error. If the latter then the cause of the problem is easily spotted: usually either a text string 
has not been enclosed in quotes or a non-integer numerical value has been used. 
 
Some errors -usually involving nonsensical integer values- are easily detectable as errors; the program will use 
standard values if one of these is detected.  
 
Some items could (at least in theory) take unlimited integer values. For these, there is no `nonsensical integer 
value' which could be specified as part of the program. The user, however, could voluntarily place limits on 
these and so -to give protection against gross typing etc errors- is given the ability to give maximum acceptable 
values. 
 
Each item also has a Factory Setting, which is hardwired into the program. All items can be reset to their factory 
settings by selecting item 999 from the opening menu. 
 
20.2 NUMBER OF ITERATIONS TO BE USED 
Each iteration corresponds to one distribution selected at random from the underlying set. Specify the number 
here. 
 
If you rarely have an interest in anything apart from basic likelinesses then it should be possible to reduce the 
default number of iterations to substantially fewer than the Factory Setting: 100,000 or fewer will often be good 
enough. However, if the program runs fast enough for you then you should ask yourself why you are risking 
your precision by reducing the number. 
 
On the other hand, if you are usually interested in PDFs then you might find that an increase to substantially 
more than the Factory Setting would be convenient. 
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If the number of iterations is set as ≤0 then the program will not carry out any iterations, but will still produce 
the sampling files. In addition, if input is from the keyboard then you will not be asked anything about the given 
data, defaults being written to details.txt; if input is from the file then it will be as normal. 
 
In practice, your choice for the number of iterations will be either 0 (if you are interested only in producing the 
sampling files) and 750,000 (if you want to carry out an analysis): some people might sometimes want to 
specify more than that. 
 
Factory Setting: 750000 
 
20.3 SEEDING THE RANDOM NUMBER GENERATOR 
There are two options:- 
 

1. The program chooses the same seed every time it is run. This is always the same, but you have no 
control over its value. 

2. The program chooses a different seed every time it is run. 
 
If defaults.txt contains any integer other than 1 then the program uses option 2. 
 
Factory Setting: 2 
 
20.4 WHETHER PDFs AND CDFs ARE WANTED 
Whether pdfs and cdfs of the various probabilities are wanted 
 
1: Yes, they are wanted 
2: No, they are not wanted 
 
Other values are replaced by 2. 
 
The calculation of pdfs and cdfs can consume a significant proportion of the program’s efforts and so should be 
switched off unless actually needed. 
 
Factory Setting: 2 
 
20.5 WHETHER data is to be read from DATA.TXT 
Whether data is to be read from data.txt 
 
1: Yes, read from data.txt 
2: No, do not read from data.txt 
 
Factory Setting: 2 
 
20.6 THE MAXIMUM NUMBER OF DISTRIBUTIONS WHICH MAY BE 

SPECIFIED IN THE NEXT ITEM 
The next item asks for the number of distributions to be used in the sampling files. There is no natural upper 
limit to this, which makes that item particularly vulnerable to gross typing errors. 
 
To give some protection, the user may specify an upper limit to the number of distributions which may be 
specified in the next item. If a number larger than that upper limit is entered, it will be reset to that upper limit. 
 
If the maximum entered here is 0 or negative then no upper limit is imposed. 
 
Factory Setting: 10000 
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20.7 THE NUMBER OF DISTRIBUTIONS WANTED IN THE SAMPLING 

FILES 
Each time the program is run, a number of distributions meeting the problem-definition is sent to the sampling 
files. This item specifies how many there should be. 
 
If 0 or fewer distributions is chosen then the program sends 100 distributions to the sampling files. 
 
Factory Setting: 100 
 
20.8 BROKEN INTO GROUPS OF 
The CSV sampling files are broken into groups by the insertion of group-level data and a blank line after every 
n'th distribution. Insert the size of the groups (ie. the value of n) here. 
 
A group size of 0 or less forces a single group consisting of all the distributions. A group size greater than the 
number of distributions switches grouping off. 
 
Factory Setting: 0 
 
20.9 HOW FREQUENTLY A NEW DISTRIBUTION IS TO BE CHOSEN 
There are three options:- 
 

1. Make every distribution a new distribution, 
2. Choose a new distribution only at the start of each group -so that all the distributions within a group are 

the same. 
3. Choose a new distribution only at the start of the sampling files -so that all the distributions throughout 

the sampling files are the same. 
 
The analysis of experiments often assumes that there is only one generating distribution. To model this, set all 
the distributions within each group to be the same (Option 2). Then each group models the results from a single 
experiment, and the different groups model the possible variation in experimental results. 
 
Factory Setting: 1 
 
20.10 THE MAXIMUM NUMBER OF OBSERVATIONS GENERATED PER 

DISTRIBUTION WHICH MAY BE SPECIFIED IN THE NEXT ITEM 
The next item asks for the number of observations to be generated per distribution in the sampling files. There is 
no natural upper limit to this, but the user may voluntarily impose one here. 
 
If the code used in the next item is 0 or -1 then no upper limit is imposed. 
 
If the code used is negative (other than -1) then the negative of the same limit is applied. 
 
Factory Setting: 50  
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20.11 CODE GIVING THE NUMBER OF OBSERVATIONS GENERATED 
PER DISTRIBUTION 

Each distribution sent to sampling_dis.csv is used as a generating distribution to simulate at least one 
observation. You specify the actual number of observations here by giving an integer, n, which has the effect 
given by Table 10. 
 
Table 10: Choices for the number of observations generated per distribution 

 
n 

 
Number of observations simulated per distribution 

1,2,… n 
0 ω(g) 
-1 Chosen at random from 1,…,ω(g) 

-2,-3,… Chosen at random from 1,…,-n 

 
If n is negative, the random choice of the number of observations is made every time a distribution is sent to file 
(ie. it is not a `once-and-for-all' decision). 
 
Factory Setting: 0 
 
20.12 WHETHER THE WEIGHTS IN A MULTIMODAL DISTRIBUTION 

ARE TO BE USED AS PROBABILITIES-OF-SELECTION RATHER 
THAN COEFFICIENTS 

There are two options:- 
 

1. Option 1: YES. Use them as probabilities-of-selection. 
2. Option 2: NO.  Use them as the coefficients in a linear combination. 

 
By selecting Option 1, you will be forcing the weights to be used as probabilities-of-selection if the conditions 
are appropriate. 
 
Factory Setting: 1 
 

21 Odds and Ends 
(An unordered list of things to remember and things which do not easily fit in elsewhere.) 
 

 If you have been looking at any file but have forgotten to close it down before running the program 
again then you will receive a run-time error or be thrown back into Windows. Close the file and -if 
your system offers you the choice- choose Retry. If your system does not offer you this choice then 
you may need to restart your computer. 

 
 For basic problems [no merging, contractions or Relative Frequencies; no given data; required 

integram =''1''; 750,000 iterations.], run times using a 64-bit laptop were as given in Table 11 
 
Table 11: Relative run-times for simple cases 

Underlying 
set 

Degree, N 

 2 5 10 25 50 75 100 
B(N) 1 2 3 9 23 42 68 
S(N) 2 3 5 13 32 60 115 
R(N) 2 3 5 13 33 61 117 
M(N) 2 3 7 18 47 89 172 
U(N) 2 3 7 18 49 90 174 
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 To investigate the effects of the sample size of the given data, take advantage of the fact that input 
relative frequencies are normalised before use, so they do not actually have to be relative frequencies 
provided they are not negative. Do not give any data as the input histogram but give it, instead, as input 
relative frequencies; varying the sample size then does just that. 

 In defaults.txt, if you choose to have a single group, by eg. selecting a group size of 0, and also choose 
to have a new distribution only at the start of a group then every entry in the sampling files will use the 
same distribution. However, that distribution will be selected at random and you will not have any say 
in its choice. To have just a single distribution, \textbf{\textit{specified by you}}, throughout the whole 
of the sampling files, when running the program, specify a contraction of magnitude zero, centred on 
the required distribution.  

 Don't be worried by the fact that the times allowed for in the countdown information are measured in 
days. At several points in the coding, it was necessary to take a view about how many iterations the 
program was being designed to cater for; it was decided to base the design on needing 1 billion. For 
that many iterations, the most long-winded analysis I could find took two days. But that was under 
extreme circumstances using a much slower computer than even the slowest modern laptop. You will 
not come anywhere near needing that: a typical use will rarely need more than 3 or 4 minutes 


